Интегралы и их приложения Поверхностные интегралы  2 рода Скалярное поле Ротор (вихрь) векторного поля Задача о вычислении массы тела. Действия с матрицами. Решить систему линейных уравнений методом Гаусса

Предел монотонной функции Числовые ряды Знакопеременные числовые ряды Ряд Фурье для четных и нечетных функций Вычисление интеграла, матриц, рядов


Примеры решения задач по математике. Вычисление интеграла, матриц, рядов

Интегралы и их приложения

Пример Найти: а) ; б) .

Решение. В задании а) подынтегральную функцию сначала упрощаем, разделив почленно каждое слагаемое из числителя на знаменатель, затем используем свойство линейности и «табличные» формулы 1)- 3):

В задании б), помимо линейности и «табличных» формул 3), 9), 1), используем формулу Ньютона-Лейбница (5.1):

Внесение под знак дифференциала и замена переменной. Можно заметить, что иногда часть подынтегральной функции образует дифференциал некоторого выражения, что позволяет применять табличные формулы.

Пример Найти: а) ; б) .

Решение. В примере а) можно заметить, что , а затем воспользоваться формулой 5) при u=lnx:

В случае б) , а потому в силу 11) при   получим:

Замечание 1. При внесении под знак дифференциала полезно, наряду с использованными выше, учитывать следующие соотношения:

;

.

Замечание 2. Интегралы из примера 5.2. можно было найти и с помощью замены переменной. При этом в определенном интеграле следует менять и пределы интегрирования. Преобразования в 5.2.б) выглядели бы, например, так:

В общем случае выбор замены определяется видом подынтегральной функции. В некоторых случаях рекомендуются специальные замены. Например, если в выражении присутствует иррациональность вида , то можно положить  или .

Пример 5.3 Найти: а) ; б) .

Решение. В случае а) имеем

(после замены применили табличную формулу 11)).

При решении б) обязательно проводим замену пределов интегрирования.

5.3. Интегрирование по частям. В ряде случаев помогает «формула интегрирования по частям». Для неопределенного интеграла она имеет вид

 , (5.2)

для определенного

 , (5.3)

При этом важно учитывать следующее.

1) Если подынтегральная функция содержит произведение многочлена от x на функции , то в качестве u выбирается многочлен, а оставшееся под знаком интеграла выражение относится к dv.

2) Если подынтегральная функция содержит обратные тригонометрические () или логарифмические () функции, то в качестве u выбирается одна из них.

Пример 5.4. Найти: а) ; б) .

Решение. В случае а) применяем формулу (5.2) и второе правило. Именно, полагаем . Тогда . Далее, , а потому . Следовательно, . В полученном интеграле выделим целую часть подынтегральной функции (так поступают, когда степень числителя не меньше степени знаменателя):

.

Окончательно решение выглядит так:

В примере б) используем (5.3) и первое из правил.

Интегрирование выражений, содержащих квадратный трехчлен. Основные идеи заключаютсяв выделении в квадратном трехчлене полного квадрата и в проведении линейной замены, позволяющей свести исходный интеграл к табличным вида 10)- 16).

Приложения определенного интеграла. Как известно, криволинейной трапецией, соответствующей неотрицательной и непрерывной на отрезке [a;b] функции f(x),

 Теория поля.


Математика Примеры решения задач