Решение задач по ядерной физике Законы радиоактивного распада Ядерная и нейтронная физика Взаимодействие нейтронов с ядрами Реактор на тепловых нейтронах

Ядерная физика в примерах и задачах

Определить спин ядра 59Со, основной терм атома которого 4F9/2 содержит восемь линий сверхтонкого расщепления.

Решение

Механический момент J атома 59Со равен 9/2, как следует из приведенного терма. Значит (см. предыдущую задачу 1.14), если J < I, то число линий сверхтонкого расщепления должно быть равно 2J + 1 = 2(9/2) + 1 = 10. Поскольку имеем восемь линий, то заключаем, что J ≥ I и 2I + 1 = 8, откуда I = 7/2.

Задача 1.16

Терм 2D3/2 атома 209Bi имеет четыре линии сверхтонкого расщепления, причем отношение интервалов между соседними линиями равно 6 : 5 : 4. Найти с помощью правила интервалов спин ядра, а также число компонент сверхтонкого расщепления линии .

Решение

Если предположить, что J ≥ I, то 2I + 1=4, откуда I = 3/2, т.е. совпадает с J. Поэтому можно только утверждать, что I ≥ 3/2 и необходима дополнительная информация. Воспользуемся правилом интервалов (рис. 1.16.1). Интервалом называется расстояние между двумя соседними линиями сверхтонкого расщепления, выраженное в разности частот, или энергий. Согласно этому правилу (см. рис. 1.16.1)

(1.16.1)

Для I = J = 3/2 правило интервалов дает отношение

,

которое оказывается меньше, чем по условию задачи. Отсюда следует, что I > 3/2. Поэтому для определения спина ядра I нужно решить уравнение

,

из которого получаем I = 9/2.

Показать, что при однородной плотности электрического заряда для ядра сферической формы энергия кулоновского отталкивания протонов Uкул = 0,6kZ2e2/R1/3, где Z и R – заряд и радиус ядра, k – коэффициент пропорциональности, определяемый системой единиц. В СИ k = 9∙109 м/Ф.

Считая, что разность энергий связи зеркальных ядер и определяется только различием энергий кулоновского отталкивания протонов (см. формулу (1.10.7) в предыдущей задаче), вычислить их радиусы. Сравнить результаты с вычислением радиусов по формуле (1.1).

Вычислить с помощью полуэмпирической формулы (1.4): а) энергии связи ядер 40Са и 107Ag; б) энергии связи на один нуклон в ядрах 50V и 200Hg; в) массы атомов 45Sc и 70Zn.

Определить с помощью формулы (1.4) заряд ядра, имеющего наименьшую массу среди ядер с одинаковым нечетным значением массового числа А. Предсказать с помощью полученной формулы характер активности (электронная или позитронная) следующих β-активных ядер: 103Ag; 127Sn и 141Cs.

Сколько компонент сверхтонкой структуры имеют в основном состоянии следующие атомы: 3H(2S1/2); 6Li(2S1/2); 9Be(1S0); 15N(4S3/2) 35Cl(2P3/2).

Отношение интенсивностей линий сверхтонкого расщепления при переходе 2P1/2 → 2S1/2 атома натрия равно приблизительно 10 : 6. Имея в виду, что сверхтонкая структура вызвана расщеплением терма 2S1/2 (расщепление терма 2P1/2 ничтожно мало), найти спин ядра 23Na.

С помощью модели ядерных оболочек написать конфигурацию основных состояний ядер: 7Li, 13C и 25Mg.

Определить с помощью модели ядерных оболочек спины и четности основных состояний ядер: .

Оценить степень несферичности ядра ,

 


Физика Деление и синтез ядер