Нелинейные электрические цепи Правила выполнения технических чертежей
Вычисление определителя Вычисление обратной матрицы Дифференциальное и интегральное исчисление Предел и непрерывность функции Производная Дифференциал функции Рассмотрим пример из микроэкономики Неопределенный интеграл

Математика курс лекций и решение задач

Элементы теории матриц

В предыдущем разделе было введено определение матрицы A размерности p ´ q как прямоугольной таблицы:

 .

Можно пользоваться сокращенной формой записи:

Типовые расчеты (курсовые задания) по математике Вычисление объемов тел. Пусть имеется тело объема V. Площадь любого поперечного сечения тела Q, известна как непрерывная функция Q = Q(x). Разобьем тело на “слои” поперечными сечениями, проходящими через точки хi разбиения отрезка [a, b]. Т.к. на каком- либо промежуточном отрезке разбиения [xi-1, xi] функция Q(x) непрерывна, то принимает на нем наибольшее и наименьшее значения. Обозначим их соответственно Mi и mi.

 A = (aij); i = 1, 2, 3, ¼, p; j = 1, 2, 3, ¼, q.

Две матрицы одинаковой размерности p ´ q называются равными, если в них одинаковые места заняты  равными числами (на пересечении i-й строки и

j-го столбца в одной и в другой матрице стоит одно и то же число; i=1, 2, ..., p; j=1, 2, ..., q).

Пусть A = (aij) – некоторая матрица и a – произвольное число, тогда aA = (aaij), то есть при умножении матрицы A на число a все числа, составляющие матрицу A, умножаются на число a.

Пусть A и B – матрицы одинаковой размерности A = (aij), B = (bij), тогда их сумма A + B – матрица C = (cij) той же размерности, опреде­ляемая из формулы cij = aij + bij, то есть при сложении двух матриц попарно складываются одинаково расположенные в них числа.

Матрицу A можно умножить на матрицу B, то есть найти матрицу C = AB, если число столбцов n матрицы A равно числу строк матрицы B, при этом матрица C будет иметь столько строк, сколько строк у матрицы A и столько столбцов, сколько столбцов у матрицы B. Каждый элемент матрицы C определяется формулой

 

Элемент cij матрицы-произведения C равен сумме произведений элементов i-

строки первой матрицы- сомножителя на соответствующие  элементы j-го столбца второй матрицы-сомножителя.

Из сказанного следует, что если можно найти произведение матриц AB, то произведение BA, вообще говоря, не определено.


Замена переменной в неопределенном интеграле