Инженерная графика Соединения деталей с помощью болтов, винтов и шпилек Соединения разъёмные и неразъёмные Классификация деталей машин Конические зубчатые передачи Ременные передачи Резьбовые соединения

Конические зубчатые передачи

Передают вращающий момент между валами с пересекающимися осями (чаще всего под углом 900). Их зубья бывают прямыми, косыми, круговыми и обычно имеют эвольвентный профиль.

И хотя, конические колёса сложнее цилиндрических как по своей геометрии, так и в изготовлении, принципы силового взаимодействия, условия работы, а следовательно, и методика расчёта аналогичны цилиндрическим.

Здесь мы рассмотрим только отличительные особенности расчёта конических колёс.

Сначала конструктор выбирает внешний окружной модуль mte, из которого рассчитывается вся геометрия зацепления, в частности, нормальный модуль в середине зуба mnm= mte (1 – 0,5 b/Re),

где Re – внешнее конусное расстояние.

Силы в конической передаче действуют аналогично цилиндрической, однако следует помнить, что из-за перпендикулярности осей радиальная сила на шестерне аналогична осевой силе для колеса и наоборот, а окружная сила при переходе от шестерни к колесу только меняет знак 

 .

 Прочностные расчёты конических колёс [45] проводят аналогично цилиндрическим, по той же методике [3]. Из условия контактной выносливости определяют внешний делительный диаметр dwe, из условия прочности на изгиб находят нормальный модуль в середине зуба mnm. При этом в расчёт принимаются воображаемые эквивалентные колёса с числами зубьев Zэ1,2 =Z1,2 / cosd1,2 и диаметры dэ1,2 = mte Z1,2 / cosd1,2. Здесь Z1, Z2, - фактические числа зубьев конических колёс. При этом числа Zэ1,2 могут быть дробными.

В эквивалентных цилиндрических колёсах [32] диаметр начальной окружности и модуль соответствуют среднему сечению конического зуба,  вместо межосевого расстояния берётся среднее конусное расстояние [45], а профили эквивалентных зубьев получают развёрткой дополнительного конуса на плоскость.

ЧЕРВЯЧНЫЕ ПЕРЕДАЧИ

Червячная передача имеет перекрещивающиеся оси валов, обычно под углом 90°. Она состоит из червяка – винта с трапецеидальной резьбой и зубчатого червячного колеса с зубьями соответствующей специфической формы.

Движение в червячной передаче преобразуется по принцпу винтовой пары. Изобретателем червячных передач считают Архимеда.

Достоинства червячных передач:

большое передаточное отношение (до 80);

плавность и бесшумность хода.

В отличие от эвольвентных зацеплений, где преобладает контактное качение, виток червяка скользит по зубу колеса. Следовательно, червячные передачи имеют "по определению" один фундаментальный недостаток: высокое трение в зацеплении. Это ведёт к низкому КПД (на 20-30% ниже, чем у зубчатых), износу, нагреву и необходимости применять дорогие антифрикционные материалы.

Кроме того, помимо достоинств и недостатков, червячные передачи имеют важное свойство: движение передаётся только от червяка к колесу, а не наоборот. Никакой вращающий момент, приложенный к колесу, не заставит вращаться червяк. Именно поэтому червячные передачи находят применение в подъёмных механизмах, например в лифтах. Там электродвигатель соединён с червяком, а трос пассажирской кабины намотан на вал червячного колеса  во избежание самопроизвольного опускания или падения.

Это свойство не надо путать с реверсивностью механизма. Ведь направление вращения червяка может быть любым, приводя либо к подъёму, либо к спуску той же лифтовой кабины.

Передаточное отношение червячной передачи находят аналогично цилиндрической U = n1 / n2 = Z2 / Z1.

Здесь Z2 – число зубьев колеса, а роль числа зубьев шестерни Z1 выполняет число заходов червяка, которое обычно бывает равно 1, 2, 3 или 4.

Очевидно, что однозаходный червяк даёт наибольшее передаточное отношение, однако наивысший КПД достигается при многозаходных червяках, что связано с уменьшением трения за счёт роста угла трения.

Основные причины выхода из строя червячных передач:

поверхностное выкрашивание и схватывание;

излом зуба.

Это напоминает характерные дефекты зубчатых передач, поэтому и расчёты проводятся аналогично [44].

 В осевом сечении червячная пара фактически представляет собой прямобочное реечное зацепление, где радиус кривизны боковой поверхности "рейки" (винта червяка) r1 равен бесконечности и, следовательно, приведённый радиус кривизны равен радиусу кривизны зуба колеса 

 rпр = r2.

Далее расчёт проводится по формуле Герца-Беляева. Из проектировочного расчёта находят  осевой модуль червяка, а по нему и все геометрические параметры зацепления.

Особенность расчёта на изгиб состоит в том, что принимается эквивалентное число зубьев Zэкв = Z2 / cos3g, где g - угол подъёма витков червяка.

Вследствие  нагрева, вызванного трением, червячные передачи нуждаются также и в тепловом расчёте. Практика показывает, что механизм опасно нагревать выше 95оС. Допускаемая температура назначается 65 oC.

Уравнение для теплового расчёта составляется из баланса тепловой энергии, а именно: выделяемое червячной парой тепло должно полностью отводиться в окружающую среду

Qвыделяемое = Qотводимое.

Решая это уравнение, находим температуру редуктора, передающего заданную мощность N

t = [860N(1-η)] / [KT S(1-Ψ)] + to.

где KT – коэффициент теплоотдачи, S – поверхность охлаждения (корпус), to – температура окружающей среды, Y – коэффициент теплоотвода в пол.

В случае, когда расчётная температура превышает допускаемую, то следует предусмотреть отвод избыточной теплоты. Это достигается оребрением редуктора, искусственной вентиляцией, змеевиками с охлаждающей жидкостью в масляной ванне и т.д.

Оптимальная пара трения это "сталь по бронзе". Поэтому при стальном червяке червячные колёса должны выполняться из бронзовых сплавов. Однако цветные металлы дороги и поэтому из бронзы выполняется лишь зубчатый венец, который крепится на сравнительно дешёвой стальной ступице. Таким образом, червячное колесо - сборочная единица, где самые популярные способы крепления венца это либо центробежное литьё в кольцевую канавку ступицы; либо крепление венца к ступице болтами за фланец; либо посадка с натягом и стопорение винтами для предотвращения взаимного смещения венца и ступицы.

Крепление венца к ступице должно обеспечивать фиксацию как от проворота (осевая сила червяка = окружной силе колеса), так и от осевого "снятия" венца (окружная сила червяка = осевой силе колеса).

КОНТРОЛЬНЫЕ ВОПРОСЫ

Каково назначение передач в машинах ?

Каковы области применения прямозубых и косозубых передач ?

Каковы сравнительные достоинства прямозубых и косозубых колёс ?

Как определяется передаточное отношение и передаточное число ?

Каковы главные виды разрушений зубчатых колёс ?

Какие силы действуют в зубчатом зацеплении ?

Какие допущения принимаются при расчёте зубьев на контактную прочность ?

По какой расчётной схеме выполняется расчёт зубьев на изгиб ?

В чём заключаются достоинства и недостатки планетарных передач ?

Для чего созданы волновые передачи и в чём заключается принцип их работы ?

В чём заключаются достоинства и недостатки волновых передач ?

Для чего созданы зацепления Новикова и в чём заключается принцип конструкции их зубьев ?

В чём заключаются достоинства и недостатки зацеплений Новикова ?

В чём заключается принцип конструкции червячной передачи ?

Каковы достоинства и недостатки червячных передач ?

Какое свойство червячной передачи отличает её от других передач ?

Каковы основные причины поломок червячных передач ?

Из каких условий находят температуру червячной передачи ?

Какие методы могут применяться для снижения температуры червячной передачи ?

Какие материалы должны применяться для червячной передачи ?

Каковы особенности конструкции червячных колёс ?

БИЛЕТ №9


1. Назовите основные способы проецирования. Приведите примеры центрального и прямоугольного проецирования на жизненной практике
2. Перечислите правила изображения резьбы на чертежах (на стержне и в отверстии)
3. По двум заданным видам постройте третий вид или проведите недостающие линии на чертеже. Выполните технический рисунок детали

  ОТВЕТ:

1. Назовите основные способы проецирования. Приведите примеры центрального и прямоугольного проецирования из жизненной практики.

Изображение предметов на чертежах получают проецированием.

Проецирование – это процесс построения изображения предмета на плоскости. Получившиеся при этом изображение называют проекцией предмета. Само слово “проекция” – латинское, обозначает “бросание вперед, вдаль”. Нечто похожее на проекцию можно наблюдать, рассматривая тень, отбрасываемую предметом на поверхность стены или пола при освещении этого предмета источником света.

wpe34.jpg (2879 bytes)Возьмем в пространстве произвольную точку А и какую-либо плоскость Н в некоторой точке а, тогда:

Точка А – проецируемая точка предмета – обозначается прописными буквами

Точка а – проекция точки А на заднюю плоскость Н – обозначается строчными буквами

Н – плоскость проекции

Прямая А – проецируемый луч.

Центр проецирования – это точка, из которой производится проецирование.

Объект проецирования – это изображаемый предмет.

Различают центральное и параллельное проецирование.

При центральном проецировании все проецирующие лучи исходят из одной точки – центра проецирования, находящегося на определенном расстоянии от плоскости проекций.

Центральную проекцию часто называют перспективной. Примерами центральной проекции являются фотоснимки, кинокадры, тени, отброшенные лучами электрической лампочки и т.д. Центральные проекции применяют при рисовании с натуры, в строительном черчении. В машиностроительных чертежах центральные проекции не применяются.

При параллельном проецировании все проецирующие лучи параллельны между собой. Примером параллельной проекции можно считать условно солнечные тени предметов.

Строить изображение предметов в параллельной проекции проще, чем в центральной. В черчении такие проекции используются в качестве наглядных изображений. При параллельном проецировании все лучи падают на плоскость проекции под одинаковым углом. Если этот угол острый, то проецирование называется косоугольным, если угол равен 90о, проецирование называется прямоугольным.

Прямоугольное проецирование является основным. Чертежи в системе прямоугольных проекций обладают рядом преимуществ. Они дают полнее сведения о форме и размерах предмета.

Волновые зубчатые передачи Представляют собой цилиндрические передачи, где одно из колёс имеет гибкий венец. Этот гибкий венец деформируется генератором волн специальной некруглой формы и входит в зацепление с центральным колесом в двух зона

Передачи трением (сцеплением) ФРИКЦИОННЫЕ ПЕРЕДАЧИ Передают движение за счёт сил трения (лат. frictio – трение). Простейшие передачи состоят из двух цилиндрических или конических роликов - катков.


Упрощенные и условные изображения крепежных деталей